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We study the systems of Euler equations that arise from agent-based dynamics driven by 
velocity alignment. It is known that smooth solutions to such systems must flock, namely 
the large-time behavior of the velocity field approaches a limiting “flocking” velocity. To 
address the question of global regularity, we derive sharp critical thresholds in the phase 
space of initial configuration that characterizes the global regularity and hence the flocking 
behavior of such two-dimensional systems. Specifically, we prove for that a large class of 
sub-critical initial conditions such that the initial divergence is “not too negative” and the 
initial spectral gap is “not too large”, global regularity persists for all time.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions les systémes des équations d’Euler qui résultent de dynamiques d’alignement
entre agents. Il a été prouvé que, pour des solutions régulières de tels systémes, 
en temps grand, le champ de vitesse s’approche d’une vitesse limite uniforme. Nous 
identifions des seuils critiques dans l’espace de phase de la configuration initiale qui 
caractérisent la régularité globale et donc le comportement en temps grand de tels 
systèmes bidimensionnels. Plus précisément, nous prouvons que, pour une classe assez 
large de conditions initiales sous-critiques telles que la divergence initiale n’est « pas trop 
négative » et l’écart spectral initial n’est « pas trop grand », la régularité globale reste vraie 
en temps grand.
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1. Flocking hydrodynamics

We consider the system of Eulerian dynamics where the density ρ(x, t) and velocity field u(x, t) = (u1, . . . un) : Rn ×
R+ �→R

n are driven by nonlocal alignment forcing,⎧⎨
⎩

ρt + ∇ · (ρu) = 0,

ut + u · ∇u =
∫

a(x, y, t)(u(y, t) − u(x, t))ρ(y, t)dy

⎫⎬
⎭ (x, t) ∈R

n ×R+. (1.1)

A solution (ρ, u) is sought subject to the compactly supported initial density ρ(x, 0) = ρ0(x) ∈ L1+(Rn) and uniformly 
bounded initial velocity u(x, 0) = u0(x) ∈ W 1,∞(Rn). The alignment forcing on the right-hand side of (1.1) involves the 
non-negative interaction kernel a(x, y, t).

Such systems arise as the macroscopic realization of some agent-based dynamics that describes the collective motion of 
N agents, each of which adjusts its velocity to a weighted average of velocities of its neighbors⎧⎪⎪⎨

⎪⎪⎩

ẋi = vi

v̇i = 1

degi

N∑
j=1

φ(|xi − x j|)(v j − vi)
(1.2)

Here, the weighted average of the right-hand side of (1.2) is dictated by the influence function φ(·), which is assumed 
to be decreasing, and degi is a weighting normalization factor. Different agent-based models employ different degi ’s, 
e.g., [3]. We focus here on two such models. The Cucker–Smale (CS) model [7] sets a uniform averaging degi ≡ N that 
leads to the symmetric interaction kernel a(x, y) = φ(|x − y|). The Motsch–Tadmor (MT) model [20] uses an adaptive

normalization degi = ∑
j φ(|xi − x j |), which leads to a(x, y, t) = φ(|x − y|)

(φ ∗ ρ)(x, t)
. The kernel is non-symmetric, but normal-

ized such that 
∫

a(x, y, t)ρ(y, t) dy = 1. The dynamics of (1.2) can be described in terms of the empirical distribution 
f (x, v, t) := 1

N

∑
j δx−x j(t) ⊗ δv−v j(t) . For large crowds of N agents, N 
 1, a limiting distribution of the approximate form 

f (x, v, t) ≈ ρ(x, t)δ(v − u(x, t)) is captured by the first two velocity moments, namely the density ρ := 〈 f (x, v, t)〉 and the 
momentum ρu := 〈v f (x, v, t)〉, which satisfy the conservative system [2,5,11,19]⎧⎨

⎩
ρt + ∇ · (ρu) = 0

(ρu)t + ∇(ρu ⊗ u) = α(x, t)

(φ ∗ ρ)(x, t)

∫
φ(|x − y|)(u(y, t) − u(x, t))ρ(x, t)ρ(y, t)dy.

(1.3)

Here α(x, t) is the amplitude of alignment, α(x, t) = (φ ∗ ρ)(x, t) in the case of the CS model, and α(x, t) ≡ 1 in the MT 
model. When classical solutions to these equations are restricted to the support of ρ(·, t), one ends with the equivalent 
system (1.1) with a(x, y, t) = α(x, t)φ(|x − y|)/(φ ∗ ρ)(x, t), namely⎧⎨

⎩
ρt + ∇ · (ρu) = 0,

ut + u · ∇u = α(x, t)

(φ ∗ ρ)(x, t)

∫
φ(|x − y|)(u(y, t) − u(x, t))ρ(y, t)dy.

(1.4)

Since the alignment forcing on the right-hand side is non-local, dictated by the support of φ, it acts even within the vacuum 
region, where dist{x, supp{ρ(·, t)}} > 0, and (1.4) extends throughout R

n . We elaborate on this issue in §1.3 below.
We note that the dynamics of both models can be interpreted in terms of the mean velocity u(x, t)

ut + u · ∇u = α(x, t)
(
u(x, t) − u(x, t)

)
, u(x, t) := φ ∗ (ρu)(x, t)

(φ ∗ ρ)(x, t)
. (1.5)

This formulation reveals that system (1.4) (and in its general form (1.1)) is dynamically aligned towards the mean u(x, t), and 
its large-time behavior is expected to approach a constant limiting velocity. This is the flocking hydrodynamics alluded to 
in the title, where a finite-size of non-vacuum state is approaching a limiting velocity as t → ∞. Specifically, the dynamics 
can be characterized in terms of the diameters

D(t) := sup
x,y∈supp{ρ(·,t)}

|x − y|, V (t) := sup
x,y∈supp{ρ(·,t)}

|u(x, t) − u(y, t)|.

The system (1.1) converges to a flock if there exists a finite D such that

sup
t≥0

D(t) ≤ D∞ and V (t)
t→∞−→ 0. (1.6)

This corresponds to the flocking behavior at the level of the agent-based description [11], [20, definition 1.1], where a 
cohesive flock of a finite diameter maxi, j |xi(t) − x j(t)| ≤ D∞ < ∞, is approaching a limiting velocity, maxi, j |vi(t) − v j(t)| →
0 as t → ∞.
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1.1. Strong solutions must flock

In this work, we focus on the case where φ is global. Since the agent-based model (1.2) exhibits flocking behavior in this 
case, [21], it is natural to expect a similar result for its macroscopic description (1.4). This is the content of the following 
theorem.

Theorem 1.1 (Strong solutions must flock [27]). Let (ρ(·, t), u(·, t)) ∈ (L∞ ∩ L1) × W 1,∞ be a global strong solution of the system 
(1.4) subject to a compactly supported initial density ρ0 = ρ(·, 0) ≥ 0 and a bounded initial velocity u0 = u(·, 0) ∈ W 1,∞ . Assume 
that a monotonically decreasing influence function φ ≤ φ(0) = 1 is global in the sense that2

V 0 < m0

∞∫
D0

φ(r)dr, m0 := |ρ0|1, (1.7)

where D0 and V 0 are the initial diameters of non-vacuum density and velocity. Then (ρ, u) converges to a flock at an exponential rate, 
namely the support of ρ(·, t) remains within a finite diameter D∞ whose existence follows from assumption (1.7)

sup
t≥0

D(t) ≤ D∞ where m0

D∞∫
D0

φ(s)ds = V 0, (1.8a)

and

V (t) ≤ V 0e−κt −→ 0, κ :=
{

m0φ∞, CS model,
φ∞, MT model,

φ∞ := φ(D∞). (1.8b)

In particular, if |φ|1 = ∞, then there is an unconditional flocking in the sense that (1.8) holds for all finite V 0 .

For the sake of completeness, we provide below an alternative derivation of the exponential alignment in (1.8), as an a 
priori bound instead of the “propagation along characteristics” argument in [27, Theorem 2.1]. To this end, we extend the 
scalar argument in [25, Lemma 1.1] to general systems using a projection argument employed in [21, Theorem 2.3]. Fix an 
arbitrary w ∈R

n and project the CS model (1.4) on w to find

(∂t + u · ∇)〈u(x, t),w〉 =
∫

φ(|x − y|)
(
〈u(y, t),w〉 − 〈u(x, t),w〉

)
ρ(y, t)dy.

It follows that u+(t) := max
x∈supp{ρ(·,t)}

〈u(x, t), w〉 satisfies

d

dt
u+ =

∫
φ(|x+ − y|)

(
〈u(y, t),w〉 − 〈u(x+, t),w〉

)
ρ(y, t)dy

≤ min
x,y∈supp ρ(·,t) φ(|x − y|)

∫ (
〈u(y, t),w〉 − 〈u(x+, t),w〉

)
ρ(y, t)dy

Similarly, we have the lower bound on u−(t) := min
x∈supp{ρ(·,t)}〈u(x, t), w〉

d

dt
u− ≥ min

x,y∈supp{ρ(·,t)}φ(|x − y|)
∫ (

〈u(y, t),w〉 − 〈u(x−, t),w〉
)
ρ(y, t)dy

The difference of the last two inequalities implies

d

dt
|u+(t) − u−(t)| ≤ −φ(D∞)m0|u+(t) − u−(t)|, φ(D∞) = min

x,y∈supp{ρ(·,t)}φ(|x − y|).

It follows that the CS velocity diameter, V (t) = sup
|w|=1

|u+(t) − u−(t)|, satisfies the bound (1.8b) with κ = m0φ∞ . The same 

argument follows for MT model with κ = φ∞ , independently of m0.

2 We let | · |p denote the usual Lp norm.
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1.2. Critical thresholds

Theorem 1.1 raises the problem whether solutions to the hydrodynamic model (1.4) remain smooth for all time. This 
question was addressed in [4,27], proving that if the compactly supported initial data stay below a certain critical threshold 
in configuration space then initial smoothness propagates and, as a result, the corresponding strong solutions will flock. 
Recall the finite-time blow-up of compactly supported density in the presence of local pressure [17,23] and even in the 
presence of global Poisson forcing [18]. In both cases, a positive lower bound on the (potential of the) forcing—the pressure, 
the Poisson forcing, etc., over the finite supp{ρ(·, t)} leads to finite-time blow up. In contrast, here the non-local character of 
the influence function φ guarantees global regularity, at least for sub-critical initial data. This type of conditional regularity 
for Eulerian dynamics depending on a critical threshold in the configuration space was advocated in a series of papers [9,12,
14–16,28]. Here, we pursue this approach to derive sharp critical thresholds for the propagation of the regularity of flocking 
hydrodynamics.

1.3. Vacuum and the finite horizon alignment

According to (1.7), if the influence function is global in the sense that 
∞∫

φ(r) dr = ∞, then the alignment dynamics 

(1.4) admits unconditional flocking in the sense that (1.8) holds for all V 0’s. This holds for both the symmetric CS model 
and non-symmetric MT model [21, proposition 2.9]. In this case, the alignment in (1.4) is active throughout R

n , inside and 
outside supp{ρ(·, t)}. Indeed, one has a global lower bound on the alignment action for all x ∈ R

n [27, proposition 6.1],

(φ ∗ ρ)(x, t) ≥ m0φ(d(x, t) + D∞) > 0, d(x, t) = dist{x, supp{ρ(·, t)}}
The flocking behavior of such a global approach was pursued in [27].

Another possible approach to study (1.4) is to focus on a specific initial configuration with finite velocity variation 
V 0 < ∞. Then, since supp{ρ(·, t)} cannot grow beyond a maximal diameter of size D∞ dictated by (1.8a), it follows that the 
alignment term on the right of the underlying conservative formulation (1.3) is

φ(|x − y|)(u(y, t) − u(x, t))ρ(x, t)ρ(y, t) ≡ 0, |x − y| > D∞,

independently of the values of {φ(r), r > D∞}. Alternatively, we can fix a compactly support influence function φ and view 
(1.8a) as a restriction on initial velocities whose variation is “not too large”, so that they lead to flocking. With either one of 
these two points of view, the values of φ(r) for r > D∞ play no role in the dynamics. We therefore may set φ(r)|r>D∞ ≡ 0, 
which in turn sets a finite horizon on the action of alignment. Namely, the alignment in (1.4) is still active in the vacuous 
annulus outside supp{ρ(·, t)},

A(t) := {x | 0 < dist{x, supp{ρ(·, t)}} < D∞},
and (1.4) applies in supp{ρ(·, t)} ∪ A(t),

⎧⎨
⎩

ρt + ∇ · (ρu) = 0,

ut + u · ∇u = α(x, t)

φ ∗ ρ

∫
φ(|x − y|)(u(y) − u(x))ρ(y)dy

⎫⎬
⎭ dist{x, supp{ρ(·, t)}} < D∞. (1.9a)

However, since φ(|x − y|)ρ(y) is supported for y’s in the intersection y ∈ Yx(t) := supp{ρ(·, t)} ∩ B D∞(x), it implies the 
alignment bound∣∣∣∣

∫
φ(|x − y|)(u(y, t) − u(x, t))ρ(y, t)dy

∣∣∣∣ ≤ V (t) · |ρ(·, t)|∞ ×
∫

y∈Yx(t)

φ(|x − y|)dy.

It follows that the alignment on the right of (1.9a) approaches zero, as x ∈ A(t) approaches the “horizon” boundary 
dist{x, supp{ρ(·, t)}} = D∞ and vol(Yx(t)) → 0. In particular, (φ ∗ρ)(x, t) ≡ 0 beyond the horizon dist{x, supp{ρ(·, t)}} > D∞ , 
where the momentum equation is reduced to inviscid pressureless equations, ut +u ·∇u = 0. Accordingly, (1.9a) can be com-
plemented with constant far-field boundary conditions, in agreement with [27, Remarks 2.8 & 6.6],

u(x, t) ≡ u∞, for dist{x, supp{ρ(·, t)}} > D∞. (1.9b)

2. Cucker–Smale hydrodynamics: global regularity and fast alignment

2.1. Global regularity

We begin by recalling the one-dimensional Cucker–Smale model for (ρ, u) : (R, R+) �→ (R+, R),
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⎧⎪⎨
⎪⎩

ρt + (ρu)x = 0,

ut + uux =
∫
R

φ(|x − y|)(u(y, t) − u(x, t))ρ(y, t)dy (x, t) ∈ (R,R+). (2.1)

In [4], it was proved that (2.1) has a global classical solution if and only if the initial data satisfy

∂xu0(x) ≥ −(φ ∗ ρ0)(x), for all x ∈R. (2.2)

Condition (2.2) separates the space of initial configurations into two distinct regimes: a sub-critical regime of initial data 
satisfying ∂xu0(x) ≥ −φ ∗ ρ0(x), ∀x ∈ supp(ρ0), which guarantees global smooth solutions; and a supercritical regime of 
initial conditions such that ∂xu0(x0) ≤ −φ ∗ ρ0(x0) for some x0 ∈ R, which leads to a finite-time blowup. This is a typical 
one-dimensional example for the critical threshold behavior. Condition (2.2) provides a sharp improvement to the earlier 
critical threshold results in [13,22,27]. Recent results in [8,24] prove the global regularity of (2.1) for singular kernels φ(|x|) =
|x|−(1+α) for α ∈ (0, 2) independent of any finite critical threshold. Singularity helps!

A first attempt to extend the study of critical threshold to the two-dimensional CS model was derived in [27]. Here, we 
improve this result with a simplified derivation of a sharper critical threshold condition, leading to an alignment decay of 
order e−κt . We recall (1.8b), which sets κ = m0φ∞ in the present case of the CS model.

Theorem 2.1 (Critical threshold for 2D Cucker–Smale hydrodynamics). Consider the two-dimensional CS model⎧⎨
⎩

ρt + ∇ · (ρu) = 0,

ut + u · ∇u =
∫

φ(|x − y|)(u(y, t) − u(x, t))ρ(y, t)dy

⎫⎬
⎭ x ∈R

2, t ≥ 0, (2.3)

subject to initial conditions, (ρ0, u0) ∈ (L1+(R2), W 1,∞(R2)), with compactly supported density, D0 < ∞, and such that the variation 
of the initial velocity satisfies the strengthened bound

V 0 ≤ m0 · min

{
|φ|1, φ2∞

4|φ′|∞
}

, V 0 = max
x,y∈supp(ρ0)

|u0(x) − u0(y))|, φ∞ = φ(D∞). (2.4)

Assume that the following critical threshold condition holds.

(i) The initial velocity divergence satisfies

div u0(x) ≥ −φ ∗ ρ0(x) for all x ∈R
2. (2.5)

(ii) Let S = 1
2 {(∂ jui +∂iu j)} denote the symmetric part of the velocity gradient with eigenvalues μi = μi(S). Then the initial spectral 

gap ηS0 := μ2(S0) − μ1(S0) is bounded

max
x

∣∣ηS0(x)
∣∣ ≤ 1

2
m0φ∞, ηS = μ2(S(x, t)) − μ1(S(x, t)). (2.6)

Then the class of such sub-critical initial conditions (2.5), (2.6) admits a classical solution (ρ(·, t), u(·, t)) ∈ C(R+; L∞ ∩ L1(R2)) ×
C(R+; Ẇ 1,∞(R2)) with large-time hydrodynamics flocking behavior (1.8b), max

x,y∈supp(ρ(·,t))
|u(x, t) − u(y, t)| � e−κt .

Before turning to the proof of Theorem 2.1, we comment on its assumptions.

Remark 2.1 (On the critical threshold (2.5), (2.6)). Theorem 2.1 recovers the one-dimensional critical threshold (2.2). It amplifies 
the same theme of critical threshold required for global regularity of other two-dimensional Eulerian dynamics found in 
restricted Euler–Poisson equations [15], rotational Euler equations [16], etc., namely if the initial divergence is “not too 
negative”, as in (2.5), and the initial spectral gap is “not too large”, as in (2.6), then global regularity persists for all times. 
In particular, since ηS = √

(∂1u1 − ∂2u2)2 + (∂1u2 + ∂2u1)2, we find that both (2.5), (2.6) hold if

|∂ jui(x,0)| ≤ 1

4
√

2
m0φ∞.

Remark 2.2 (On the finite variation (2.4)). Observe that (2.4) places a restriction on the size of V 0 even in the case of 
unconditional flocking, |φ|1 = ∞. Specifically, recall that V 0 dictates the maximal diameter of the flock in (1.8a), and thus 
(2.4) amounts to

D∞∫
φ(s)ds ≤ φ2(D∞)

4 maxs≤D∞|φ′(s)| . (2.7)
D0
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Since the term on the left is increasing while the term on the right is decreasing as functions of D∞ , it follows that (2.7) is 
satisfied for diameters D∞ up to some maximal finite size, which means that the condition made in (2.4) is met for finite 

V 0 = m0

D∞∫
φ(s) ds depending on the influence function φ. This finite restriction on V 0 can probably be improved but, unlike 

in the one-dimensional case, it cannot be completely removed. In fact, since V 0 ≤ (μ2(S0) + ω0)D∞ , the bound sought in 
(2.4) places a purely two-dimensional restriction on the size of the initial vorticity.

Remark 2.3 (On the finite horizon). Observe that in the case of alignment with a finite horizon, the critical threshold (2.5)
requires that div u0(x) ≥ 0 for dist{x, supp{ρ0}} > D∞ . This is precisely the critical threshold condition that rules out finite 
time blow-up in the pressureless equations [26], which is satisfied when prescribing a far-field constant velocity (1.9b). In 
this case, the critical threshold (2.5) needs to be verified within the finite horizon dist{x, supp{ρ0}} < D∞ .

Proof. Our purpose is to show that the derivatives {∂ jui} are uniformly bounded. We proceed in four steps.
Step #1: the dynamics of div u +φ ∗ρ . Differentiation of (1.1) implies that the 2 × 2 velocity gradient matrix, Mij := ∂ jui , 

satisfies

Mt + u · ∇M + M2 = −(φ ∗ ρ)M + R, Rij := ∂ jφ ∗ (ρui) − ui∂ jφ ∗ ρ. (2.8)

The entries of the residual matrix {Rij} can be bounded by the commutator estimate [27, proposition 4.1] in terms of 
V (t) = sup

supp(ρ)

|ui(x, t) − ui(y, t)| ≤ V 0 e−κt ,

|Rij| =
∣∣∣∣∣∣
∫
Rn

∂ jφ(|x − y|)(ui(y, t) − ui(x, t))ρ(y, t)dy

∣∣∣∣∣∣ ≤ |φ′|∞m0 V 0 e−κt, κ = m0φ∞.

The first step is to bound the divergence: taking the trace of (2.8), we find that d := ∇ · u satisfies

dt + u · ∇d + Tr M2 = −(φ ∗ ρ)d + Tr R.

Expressed in terms of the material derivative along particle path, X ′ := (∂t + u · ∇)X , we have d′ + Tr M2 = −(φ ∗ρ)d + Tr R . 
We now make a key observation that Tr R is in fact an exact derivative along the particle path. Indeed, as in [4] we invoke 
the mass equation,

Tr R = φ ∗ ∇ · (ρu) − u · ∇φ ∗ ρ = −(φ ∗ ρ)t − u · ∇φ ∗ ρ = −(φ ∗ ρ)′,

and we end up with

(d + φ ∗ ρ)′ + Tr M2 = −(φ ∗ ρ)d. (2.9)

To proceed, we express Tr M2 ≡ d2 + η2
M

2
in terms of the spectral gap, ηM := λ2(M) −λ1(M), associated with the eigenvalues 

of M ,

(d + φ ∗ ρ)′ = −1

2
η2

M − 1

2
d(d + 2φ ∗ ρ). (2.10)

We need to follow the dynamics of the spectral gap ηM . To this end, one may try to use the spectral dynamics associated 
with M , [14]: by (2.8) the λi ’s satisfy

λ′
i + λ2

i = −(φ ∗ ρ)λi + 〈�i, Rri〉, i = 1,2,

where {�i, ri} are the left- and right-hand-side eigenvectors associated with λi , normalized such that 〈�i, ri〉 = 1. Taking the 
difference of these two equations shows that the spectral gap ηM = λ2 − λ1, satisfies the transport equation

η′
M + (d + φ ∗ ρ)ηM = 〈�2, Rr2〉 − 〈�1, Rr1〉.

Here one faces the difficulty that arises with the term on the right, namely, even with the control of the entries {Rij}, 
we may still encounter an ill-conditioned M with |�i | · |ri | 
 1 so that the magnitude of this term is left unchecked. To 
circumvent this difficulty, we proceed along the lines argued in [26]: we split M into its symmetric and antisymmetric parts 
M = S + � and use the identity3

3 Equating the trace of M2 with that of S2 + �2 + S� + �S we find Tr M2 = Tr S2 − 2ω2. Using Tr X2 = 1
2 (d2 + η2

X
) with X = M on the left and X = S

on the right implies (2.11).
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η2
M ≡ η2

S − 4ω2, M = S + �, � :=
(

0 −ω
ω 0

)
, (2.11)

where ω is the scaled vorticity4 ω = 1
2 (∂1u2 − ∂2u1). Expressed in terms of ηS , the trace dynamics (2.10) now reads

(d + φ ∗ ρ)′ = 1

2
(4ω2 − η2

S) − 1

2
d(d + 2φ ∗ ρ).

This calls for the introduction of the new “natural” variable e = d + φ ∗ ρ , satisfying

e′ = 1

2

(
(φ ∗ ρ)2 + 4ω2 − η2

S − e2
)

. (2.12)

Our purpose is to show that {x | e(x, t) ≥ 0} is invariant region of the dynamics (2.12).
Step #2: bounding the spectral gap ηS . Consider the dynamics of the symmetric part of (2.8)

S ′ + S2 = ω2
I2×2 − (φ ∗ ρ)S + Rsym, Rsym = 1

2
(R + R�).

The spectral dynamics of its eigenvalues, μ2(S) ≥ μ1(S), is governed by

μ′
i + μ2

i = ω2 − (φ ∗ ρ)μi + 〈
si, Rsymsi

〉
(2.13)

driven by the orthonormal eigenpair {s1, s2} of the symmetric S . Taking the difference, we find that ηS := μ2(S) −μ1(S) ≥ 0
satisfies

η′
S + eηS = q, e = d + φ ∗ ρ. (2.14)

This is the same dynamics found with ηM , except that the different residual on the right-hand side of (2.14), given by

q := 〈
s2, Rsyms2

〉 − 〈
s1, Rsyms1

〉
,

is now controlled by the size of {Rij}: since si are normalized,

|q(·, t)| ≤ 2 max
i j

|Rij(·, t)| ≤ 2|φ′|∞m0 V 0e−κt, κ = m0φ∞. (2.15)

Hence, as long as e(·, t) remains positive then ηS remain uniformly bounded

|ηS(x, t)| ≤ max
x

|ηS(x,0)| + 2
|φ′|∞
φ∞

V 0 < max
x

|ηS(x,0)| + 1

2
m0φ∞ < m0φ∞ (2.16)

The first inequality on the right-hand side follows from the integration of (2.14)–(2.15); the second follows from the 
V 0-bound in (2.4) and the third from the assumed bound on ηS0 in (2.6).

Step #3: the invariance of e(·, t) ≥ 0 . We return to (2.12): expressed in terms of c(x, t) :=
√

(φ ∗ ρ)2 − η2
S , we have

e′ ≥ 1

2

(
c2(x, t) − e2

)
, c(x, t) =

√
(φ ∗ ρ)2 − η2

S . (2.17)

Observe that c(·) is well defined in R: the upper bound (2.16) and the lowerbound φ ∗ ρ ≥ m0φ∞ imply that as long as 
e ≥ 0, the right term on the right of (2.17) remains boundedly positive

c(x, t) ≥
√

m2
0φ

2∞ − max
x

η2
S(x, t) ≥ cmin > 0.

Since e′ ≥ 1
2 (c2

min − e2) = 1
2 (cmin − e)(cmin + e), it follows that e is increasing whenever e ∈ (−cmin, cmin) and in particular, 

if e0 ≥ 0 then e(x, t) remains positive at later times. Thus, if the initial data are sub-critical in the sense that (2.5) holds

e0 = div u0(x) + φ ∗ ρ0(x) ≥ 0,

then e(·, t) ≥ 0 and ηS (·, t) remains bounded.
Step #4: an upper-bound of e(·, t). The lower-bound e ≥ 0 implies that the vorticity is bounded. Indeed, the anti-

symmetric part of (2.8) yields that the vorticity ω = 1
2 Tr J M satisfies

ω′ + eω = 1

2
Tr J R, J =

(
0 −1
1 0

)
(2.18)

4 The use of such scaling simplifies the computation below.
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hence

|ω|′ ≤ −e|ω| + 1

2
|q|, |q(·, t)| ≤ 2|φ′|∞m0 V 0e−κt, κ = m0φ∞, (2.19)

and we end up with same upper bound on ω as with ηS ,

|ω(x, t)| ≤ ωmax, ωmax := max
x

|ω0| + 1

2
m0φ∞. (2.20)

Returning to (2.12), we have (recall φ ≤ 1)

e′ ≤ 1

2

(
(φ ∗ ρ)2 + 4ω2 − e2

)
≤ 1

2

(
m2

0 + 4ω2
max − e2

)
,

which implies that e(x, t) ≤ emax < ∞. The uniform bound on e implies that div u is uniformly bounded, | div u| ≤ |e|∞ +
|φ ∗ ρ|∞ ≤ emax + m0, and, together with the bound on the spectral gap (2.16), it follows that the symmetric part {Sij} is 
bounded. Finally, together with the vorticity bound (2.20), it follows that {∂ jui} are uniformly bounded, which completes 
the proof. �
Remark 2.4. Observe that the region of sub-critical configuration leading to global regularity becomes larger for |ω0| 
 1, 
in agreement with the statements made in [6,16] that rotation prevents or at least delays finite-time blow-up. Specifi-

cally, if |ω0(·)| ≥ ωmin > 0, then one can set a larger lower barrier c =
√

(φ ∗ ρ)2 + 4ω2
min − η2

S in (2.17) leading to the 
improved threshold div u0 > −φ ∗ ρ0 − ωmin. In particular, if ω is large enough so that 4ω2 − η2

S > 0, that is if M has 
complex-valued eigenvalues, then the invariance of the positivity of e follows at once from the fact that (2.12) is dominated 
by e′ ≥ 1

2

(
(φ ∗ ρ)2 − e2

)
. As in the 2D restricted Euler–Poisson equations [15], the difficulty lies within the case of real 

eigenvalues.

Remark 2.5. The proof of Theorem 2.1 reveals two main aspects. First, the commutator structure of the alignment term on 
the right of (2.3)2, expressed as [φ∗, u](ρ), leads to the ‘residual terms’ Rij with exponentially decaying bound. The role 
of the commutator structure was highlighted in our recent work [24]. Second, of spectral dynamics [12,14,15] are used to 
trace the propagation of regularity for the remaining, non-residual terms in (2.8).

2.2. Fast alignment

We extend the one-dimensional arguments of [24] that show an exponentially rapid convergence towards a flocking state, 
consisting of a constant 2-vector velocity ū ∈ R

2 and a traveling density profile ρ̄(x, t) = ρ∞(x − tū). We only indicate the 
main aspects in the passage to the present system. We start by noting that the positivity of e implies more than the mere 
boundedness of the spectral gap ηS and the vorticity ω. Indeed, (2.14) and (2.19) imply that these quantities follow the 
exponential decay of q in (2.15)

|ηS(·, t)|∞ + |ω(·, t)|∞ � e−κt .

This shows that, modulo rapidly decaying error terms E(t) of order E(t) � e−κt , equation (2.12), which governs e, takes the 
form

et + u · ∇e = 1

2

(
h2 − e2

)
+ E(t), h := φ ∗ ρ

Moreover, convolving the mass equation with φ, we find

ht + u · ∇h =
∫

∇φ(|x − y|) · (u(x, t) − u(y, t))ρ(y, t)dy. (2.21)

Observe that the quantity on the right of rapidly decaying, being upper-bounded by � |φ′|∞V (t) � e−κt . Hence, the differ-
ence d = e − h satisfies

dt + u · ∇d = −1

2
(e + h)d + E(t).

The positivity of e + h then implies the rapid decay of the divergence, | div u(·, t)|∞ � e−κt . The exponential decay of the 
divergence, the vorticity and the spectral gap imply that |∂ jui(·, t)|∞ � e−κt . Let ū be a large-time limiting value of u(·, t). 
The mass equation reads

ρt + ū · ∇ρ = −dρ + (ū − u) · ∇ρ.

The term on the right is rapidly decaying because d and (ū − u) are, and one concludes along the lines of [25], that there 
exists a traveling density profile such that ρ(x, t) − ρ∞(x − tū) → 0.



S. He, E. Tadmor / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 795–805 803
3. Motsch–Tadmor hydrodynamics

In this section, we study the flocking hydrodynamics that arises from the MT model (1.5) with κ = φ∞ . We begin by 
recalling the one-dimensional case

ρt + (ρu)x = 0, (x, t) ∈ (R,R+)

ut + uux =
∫

φ(|x − y|)
(φ ∗ ρ)(x, t)

(u(y, t) − u(x, t))ρ(y, t)dy.
(3.1)

System (3.1) was recently studied in [1], as the hydrodynamic description for agent-based model of “emotional contagion”, 
and in [10] in the context of stable swarming. In [4], it was proved that (3.1) has a global classical solution for sub-critical 
initial data such that

∂xu0(x) ≥ −σ+(V 0) for all x ∈R, (3.2)

for a certain critical curve σ+ ≥ 0. We now make a precise statement of the critical threshold for both the one- and 
two-dimensional MT model.

Theorem 3.1 (Critical threshold for 2D Motsch–Tadmor hydrodynamics). Consider the two-dimensional MT model in (x, t) ∈ (R2, R+),⎧⎨
⎩

ρt + ∇ · (ρu) = 0,

ut + u · ∇u =
∫

a(x, y, t)(u(y, t) − u(x, t))ρ(y, t)dy, a(x, y, t) := φ(|x − y|)
(φ ∗ ρ)(x, t)

,
(3.3)

subject to initial conditions (ρ0, u0) ∈ (L1, W 1,∞(R2)), with compactly supported density, D0 < ∞ and initial velocity of finite vari-
ation

V 0 ≤ m0 · min

{
|φ|1, φ2∞

4|φ′|∞(1 + 2φ∞)

}
, φ∞ = φ(D∞). (3.4)

Assume that the following critical threshold condition holds.

(i) The initial velocity divergence satisfies

div u0(x) ≥ −1 for all x ∈ R
2. (3.5)

(ii) Then the initial spectral gap ηS0 := μ2(S0) − μ1(S0) is bounded

max
x

∣∣ηS0(x)
∣∣ ≤ 1

2
, ηS = μ2(S(x, t)) − μ1(S(x, t)). (3.6)

Then the class of such sub-critical initial conditions (3.5), (3.6) give rise to a classical solution (ρ(t), u(t) ∈ C(R+; L∞(R2)) ×
C(R+; Ẇ 1,∞(R2)) with large-time hydrodynamics flocking behavior (1.8b) max

x∈supp(ρ)
|u(x, t) − u(y, t)| � e−κt .

Remark 3.1. In the case of finite horizon alignment encoded in (1.9) with α = φ ∗ ρ , the critical thresholds (3.5), (3.6) can 
be restricted to the finite set dist{x, supp{ρ0}}.

Proof. As before, we trace the dynamics of M = ∂ jui ,

Mt + u · ∇M + M2 = −M + R, (3.7)

where the entries of the residual matrix {Rij} are given by

Rij(x, t) :=
∫

y∈R2

∂ ja(x, y, t)(ui(y, t) − ui(x, t))ρ(y, t)dy, a(x, y, t) = φ(|x − y|)
(φ ∗ ρ)(x, t)

Expressed in terms of the operator A(w) := ∫
y a(x, y, t)w(y)dy, the entries of R have the commutator structure Rij =

∂ j[A, ui](ρ) which can be estimated by the commutator bound [27, proposition 7.1] in terms of V (t) = supsupp(ρ)|ui(x, t) −
ui(y, t)|,

|Rij(x, t)| = ∣∣∂ j[A, ui](ρ)
∣∣ ≤ |φ′|∞

φ∞
V 0 e−κt, κ = φ∞.

We now proceed as before. As a first step, we follow the dynamics of the d = div u: taking the trace of (3.7), we find
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d′ + 1

2
(d2 + η2

S) = ω2 − d + r, r := Tr R ≤ 2
|φ′|∞
φ∞

V 0. (3.8)

This calls for the introduction of a new variable e := d + 1, where the last equation recast into the Ricaccti’s form

e′ = 1

2

(
1 − η2

S + 2r − e2
)

+ ω2. (3.9)

Our purpose is to show that the {x | e(x, t) ≥ 0} is invariant of the dynamics (3.9) and to this end we need to bound the 
spectral gap ηS .

The second step is to follow the spectral dynamics associated with the symmetric part of (3.7)

μ′
i(S) + μ2

i (S) = ω2 − μi(S) + 〈
si, Rsymsi

〉
.

Taking the difference and recalling that si are the normalized eigenvectors of S we find the dynamics of the spectral gap,

η′
S + eηS = q, |q| ≤ 2 max |Rij(x, t)| ≤ 2

|φ′|∞
φ∞

V 0 e−κt . (3.10)

It follows that as long as e(·, t) is positive, then

|ηS(x, t)| ≤ max
x

|ηS0(x)| + 2
|φ′|∞
φ2∞

V 0 <
1

2
, (3.11)

and therefore c :=
√

1 − η2
S + 2r has the lower bound c(x, t) ≥ cmin > 0, where

max
x

|ηS0(x)| +
(

2
|φ′|∞
φ2∞

+ 4
|φ′|∞
φ∞

)
V 0 ≤ 1 − c2

min < 1

This inequality follows from the assumed bounds on V 0 in (3.4) and on the initial spectral gap (3.6), and the bound of r in 
(3.8). As a final step, we return to (3.9) to find, e′ ≥ 1

2 (c2
min − e2), which guarantees that if the critical threshold (3.5) holds, 

i.e. if e0 ≥ 0, then e(x, t) ≥ 0 at a later time. Moreover, since e(·, t) ≥ 0, the vorticity equation, ω′ + eω = 1
2 Tr J R , shows 

that |ω(·, t)| remains bounded in terms of maxx |Rij(x, t)| � rmax < ∞. The transport equation (3.9) implies

e′ ≤ 1

2

(
1 + 2r + 2ω2 − e2

)
≤ 1

2

(3

2
+ 2ω2

max − e2
)
,

and a uniform upper bound of e(·, t) ≤ emax < ∞ follows. �
Remark 3.2. In the one-dimensional case, ηS = ω ≡ 0 and the dynamics of e = d + 1 in (3.9) simplifies into e′ = 1

2 (1 + 2r −
e2). Hence, the variation bound (3.4) can be related to

V 0 < m0 min

{
|φ|1 ,

1

4

φ∞
|φ′|∞

}

so that 1 + 2r ≥ cmin > 0 and e′ > 1
2 (cmin − e2) implies global smoothness under the critical threshold condition ∂xu0(x) ≥

−1.

Remark 3.3. One can follow the argument in section 2.2 to conclude that the same rapid alignment holds for MT model. 
Indeed, the MT model enhances the convergence rate towards a limiting flocking state.

Acknowledgements

Research was supported in part by NSF grants DMS16-13911, RNMS11-07444 (KI-Net) and ONR grant N00014-1512094. 
We thank the ETH Institute for Theoretical Studies (ETH-ITS) for the support and hospitality.

References

[1] A. Bertozzi, J. Rosado, M. Short, L. Wang, Contagion shocks in one dimension, J. Stat. Phys. 158 (3) (2015) 647–664.
[2] J.A. Canizo, J.A. Carrillo, J. Rosado, A well-posedness theory in measures for kinetic models of collective motion, Math. Models Methods Appl. Sci. 21 

(2009) 515–539.
[3] J. Carrillo, Y.-P. Choi, S. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in: N. Bellomo, P. Degond, E. Tadmor 

(Eds.), Active Particles, vol. 1. Advances in Theory, Models, and Applications, Birkhäuser, 2017.
[4] J.A. Carrillo, Y.-P. Choi, E. Tadmor, C. Tan, Critical thresholds in 1D Euler equations with nonlocal forces, Math. Models Methods Appl. Sci. 26 (1) (2016) 

185–206.
[5] J. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM J. Math. Anal. 42 (218) (2010) 

218–236.

http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4252535732303135s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib43435232303039s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib43435232303039s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib43435032303137s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib43435032303137s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4343545432303136s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4343545432303136s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4346525432303130s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4346525432303130s1


S. He, E. Tadmor / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 795–805 805
[6] B. Cheng, E. Tadmor, Long time existence of smooth solutions for the rapidly rotating shallow-water and Euler equations, SIAM J. Math. Anal. 39 (5) 
(2008) 1668–1685.

[7] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control 52 (5) (2007) 852–862.
[8] T. Do, A. Kiselev, L. Ryzhik, C. Tan, Global regularity for the fractional Euler alignment system, arXiv:1701.05155, 2017.
[9] S. Engelberg, H. Liu, E. Tadmor, Critical thresholds in Euler–Poisson equations, Indiana Univ. Math. J. 50 (2001) 109–157.

[10] D. Gorbonos, N. Gov, Stable swarming using adaptive long-range interactions, arXiv:1702.00761, 2017.
[11] S.-Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models 1 (3) (2008) 415–435.
[12] Y. Lee, H. Liu, Thresholds in three-dimensional restricted Euler–Poisson equations, Physica D 262 (2013) 59–70.
[13] H. Liu, E. Tadmor, Critical thresholds in a convolution model for nonlinear conservation laws, SIAM J. Math. Anal. 33 (2001) 930–945.
[14] H. Liu, E. Tadmor, Spectral dynamics of the velocity gradient field in restricted flows, Commun. Math. Phys. 228 (2002) 435–466.
[15] H. Liu, E. Tadmor, Critical thresholds in 2D restricted Euler–Poisson equations, SIAM J. Appl. Math. 63 (2003) 1889–1910.
[16] H. Liu, E. Tadmor, Rotation prevents finite-time breakdown, Physica D 188 (2004) 262–276.
[17] T.P. Liu, T. Yang, Compressible Euler equations with vacuum, J. Differ. Equ. 140 (1997) 223–237.
[18] T. Makino, Blowing up solution of the Euler–Poisson equation for the evolution of gaseous stars, Transp. Theory Stat. Phys. 21 (1992) 615–624.
[19] N. Mecholsky, E. Ott, T. Antonsen, Obstacle and predator avoidance in a model for flocking, Physica D 239 (12) (2010) 988–996.
[20] S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys. 144 (5) (2011) 923–947.
[21] S. Motsch, E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev. 56 (4) (2014) 577–621.
[22] S. Schochet, E. Tadmor, Regularized Chapman–Enskog expansion for scalar conservation laws, Arch. Ration. Mech. Anal. 119 (1992) 95–107.
[23] T. Sideris, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys. 101 (1985) 475–485.
[24] R. Shvydkoy, E. Tadmor, Eulerian dynamics with a commutator forcing, Trans. Math. Appl. 1 (1) (2017) 1–26.
[25] R. Shvydkoy, E. Tadmor, Eulerian dynamics with a commutator forcing II: flocking, DCDS-A (2017), in press.
[26] E. Tadmor, Vanishing viscosity and dual solutions of the two-dimensional pressureless equations, in preparation.
[27] E. Tadmor, C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A 372 (2028) (2014) 

20130401.
[28] E. Tadmor, D. Wei, On the global regularity of sub-critical Euler–Poisson equations with pressure, J. Eur. Math. Soc. 10 (2008) 757–769.

http://refhub.elsevier.com/S1631-073X(17)30150-4/bib435432303038s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib435432303038s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib435332303037s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib444B525432303137s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib454C5432303031s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib474732303137s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib485432303038s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4C4C32303133s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4C5432303031s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4C5432303032s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4C5432303033s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4C5432303034s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4C5931393937s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4D6131393932s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4D4F4132303130s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4D5432303131s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib4D5432303134s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib535431393932s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib536931393835s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib535432303136s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib535432303137s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib545432303134s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib545432303134s1
http://refhub.elsevier.com/S1631-073X(17)30150-4/bib545732303038s1

	Global regularity of two-dimensional ﬂocking hydrodynamics
	1 Flocking hydrodynamics
	1.1 Strong solutions must ﬂock
	1.2 Critical thresholds
	1.3 Vacuum and the ﬁnite horizon alignment

	2 Cucker-Smale hydrodynamics: global regularity and fast alignment
	2.1 Global regularity
	2.2 Fast alignment

	3 Motsch-Tadmor hydrodynamics
	Acknowledgements
	References


